When does a central bank’s balance sheet require fiscal support?

Marco Del Negro
Federal Reserve Bank of New York
Christopher A. Sims
Princeton University

“New Developments in Business Cycle Analysis,” Norges Bank

Disclaimer: The views expressed are ours and do not necessarily reflect those of the Federal Reserve Bank of New York or the Federal Reserve System
Yet another balance sheet simulation?

- Hall and Reis (2013), Carpenter et al. (2013), Greenlaw et al. (2013), Christensen et al. (2013) examine likely scenarios, based on historically normal behavior of interest rates and demand for central bank liabilities

- None of these papers uses a model where inflation and interest rates are endogenously determined

- We look at complete, though simplified, economic model in order to study why a central bank’s balance sheet matters at all and the consequences of a lack of fiscal backing for the central bank
In our model, interest rates, inflation, and seigniorage are endogenous, hence we can answer questions such as:

1. Under what conditions does the central bank need fiscal support?

 - The central bank has one quasi-fiscal resource: seigniorage.
 - But seigniorage is endogenous. So it is possible for seigniorage to be insufficient to allow the CB to maintain policy commitments without support from the fiscal authority.
Contribution

In our model, interest rates, inflation, and seigniorage are endogenous, hence we can answer questions such as:

1. Under what conditions does the central bank need fiscal support?
 - The central bank has one quasi-fiscal resource: seigniorage.
 - But seigniorage is endogenous. So it is possible for seigniorage to be insufficient to allow the CB to maintain policy commitments without support from the fiscal authority.

2. How does the sensitivity of the CB balance sheet to shocks (changes in real rate, inflation expectations,..) depend on interest rate policy? (Berriel and Bhattarai, 2009)
Can self-fulfilling solvency crises arise when the CB holds (a lot of) long-duration assets?

- If the CB cannot rely on fiscal backing
- ... and has to rely on seigniorage (→ higher inflation) if the value of its assets were to fall below the value of reserves
- ... an equilibrium may arise where the public’s inflation expectations become self-fulfilling:
 - ↑ future interest rates → ↓ value of long-duration assets → balance sheet gap that needs to filled with future seigniorage
- Multiplicity arises depending on 1) size/duration of balance sheet, 2) properties of currency demand function.
Results (Preliminary)

1. In a calibrated model for the US economy, CB solvency would become an issue only under rather extreme scenarios, for current balance sheet size.

2. Under the baseline calibration, **seigniorage is large**

 \[\text{PDV Seigniorage} \gg \text{Reserves} \]

 hence provides the CB with a large safety net.

 - .. but there is much **uncertainty** regarding the PDV of seigniorage – properties of the **currency demand** function are key (bitcoins, ...).
The model

• Simple, perfect-foresight, non-linear, continuous-time model
 • Exogenous real interest rate ρ and income Y
 • Flexible prices
• All uncertainty is revealed at time 0
Households

- Households/private sector maximize

\[\int_0^\infty e^{\beta \log C} \, dt \]

subject to

\[C(1 + \psi(v)) + \dot{F} + \frac{\dot{V} + \dot{M} + q\dot{B}^P}{P} = \]

\[Y + \rho F + r \frac{V}{P} + (\chi + \delta - q\delta) \frac{B^P}{P} - \tau \]

- \(F \): storage/foreign assets paying an exogenous real rate \(\rho \)
- \(V \): overnight reserves paying nominal rate \(r \). \(M \): currency
- \(B^P \): Woodford (2001)-style bond (depreciates at rates \(\delta \), coupon \(\delta + \chi \), duration \(\delta^{-1} \))
- Population growth \(n \) and productivity growth \(\gamma \) (omitted here for simplicity)
Transactions technology

\[v = \frac{PC}{M} \]

\[\psi(v) = \frac{\psi_0 v}{1 + \psi_1 v} \]

- \(\psi_1 < 0 \Rightarrow v^{-1} \) asymptotes to \(\psi_1^{-1} \) as \(r \to \infty \)
- \(\psi_1 > 0 \Rightarrow \) Implies real balances go to zero for \(r > \frac{\psi_0}{\psi_1^2} \)
Fiscal policy

• Fiscal Authority budget constraint:

\[g + (\chi + \delta - \delta q) \frac{B}{P} = \tau + \tau^C + q \frac{\dot{B}}{P} \]

• \(B = B^P + B^C \) (bonds are held either by the public or the CB)

• \(\tau^C \) remittances from CB

• Passive fiscal policy:

\[\tau = \xi_0 + \xi_1 q \frac{B}{P}, \quad \xi_1 > \rho \]
Conventional and unconventional monetary policy

- Reaction function for interest on reserves \(r \):

\[
\dot{r} = \theta_r \cdot \left(\bar{r} + \theta_\pi \left(\frac{\dot{P}}{P} - \bar{\pi} \right) - r \right), \quad r \geq r
\]

- Unconventional monetary policy: path for \(B^C \) (Treasuries held by CB)

- The central bank budget constraint is:

\[
q \frac{\dot{B}^C}{P} - \frac{\dot{V} + \dot{M}}{P} = (\chi + \delta - \delta q) B^C \frac{P}{P} - r V \frac{P}{P} - \tau^C
\]
A present value take on CB solvency and remittances

\[
q \frac{B_0^C}{P_0} - \frac{V_0}{P_0} + \int_0^\infty \frac{\dot{M}_t}{P_t} e^{-\int_0^t \rho_s ds} dt
\]

- Mkt value of assts - reserves
- PDV seigniorage

\[
= \int_0^\infty \tau_t^C e^{-\int_0^t \rho_s ds} dt
\]

- PDV remittances

- if LHS > 0 CB is “solvent”: it needs no fiscal backing

See also Berriel and Bhattarai (2009), Hall and Reis (2013), Bassetto and Messer (2013)...

Del Negro, Sims
Central bank’s balance sheet
Norges Bank, June 2014
A present value take on CB solvency and remittances

\[q \frac{B^C_0}{P_0} - \frac{V_0}{P_0} + \int_0^\infty \frac{\dot{M}_t}{P_t} e^{-\int_0^t \rho_s ds} dt \]

Mkt value of assts - reserves
PDV seigniorage

\[= \int_0^\infty \tau^C_t e^{-\int_0^t \rho_s ds} dt \]

PDV remittances

- if LHS > 0 CB is “solvent”: it needs no fiscal backing

- PDV of remittances does not depend on:

 1. Future path of \(B^C \) (whether \(B^C \) is held to maturity or not)
 2. Accounting rules, e.g., rule for remittances, deferred asset ...

- Time path of \(\tau^C \) will

- See also Berriel and Bhattarai (2009), Hall and Reis (2013), Bassetto and Messer (2013) ...
Rule for remittances

- As long at $\tau^C \geq 0$, rule for remittances does not matter for equilibrium
- Two principles: i) remittances cannot be negative, ii) whenever positive, remittances are such that the central bank capital measured at historical costs remains constant over time:

$$\tilde{K} = (\tilde{q} B^C - V - M) e^{nt} = \text{constant}.$$

where \tilde{q} evolves according to

$$\dot{\tilde{q}} = (q - \tilde{q}) \max \left\{ 0, \frac{\dot{B}^C}{B^C} + \delta \right\}$$

yielding

$$\tau^C = \max \left\{ 0, (\chi - \delta(\tilde{q} - 1)) \frac{B^C}{P} \right. + \left. \left(\dot{\tilde{q}} - (q - \tilde{q}) \left(\frac{\dot{B}^C}{B^C} + (\delta + n) \right) \frac{B^C}{P} \right) - r \frac{V}{P} \right\} \mathcal{I}\{\tilde{K} \geq \tilde{K}_0\}$$

Deferred Asset
Equilibrium

- Fisher eq. + Taylor rule yield a solution for interest rates:

\[r_t = \int_0^{\infty} e^{-(\theta \pi - 1)\theta r_s} \theta_r \left(\theta \pi \rho_{t+s} - (\bar{r} - \theta \pi \bar{\pi}) \right) ds + \kappa e^{(\theta \pi - 1)\theta r t} \]

- This solution is not unique. In the paper we show simulations under explosive paths, but our results do not hinge on non-explosiveness.
Equilibrium

- Fisher eq. + Taylor rule yield a solution for interest rates:

\[r_t = \int_0^\infty e^{-(\theta \pi - 1)\theta r} \theta_s \theta_r \left(\theta \pi \rho_{t+s} - (\bar{r} - \theta \pi \bar{\pi}) \right) ds + \kappa e^{(\theta \pi - 1)\theta r t} \]

- This solution is not unique. In the paper we show simulations under explosive paths, but our results do not hinge on non-explosiveness

- \[v_t^2 \psi'(v_t) = r_t, \quad v_t = \frac{P_tC_t}{M_t} \], defines money demand ⇒ seigniorage

- CB determines the size of the balance sheet, but its composition between interest-bearing liabilities (V) and currency (M) is determined by the private sector

- No arbitrage condition for long term bonds:

\[\frac{\chi + \delta}{q} - \delta + \frac{\dot{q}}{q} = r \quad \Rightarrow \]

\[q_0 = (\chi + \delta) \int_0^\infty e^{-\left(\int_0^t r_s ds + \delta t\right)} dt \]
Three levels of CB balance sheet problems

Level 1: Accounting capital (book value of $B^C - V - M < 0$

- Rule for remittances implies $\tau^C = 0$ for some period.
- No fiscal support ($\tau^C < 0$) required. In fact, PDV of τ^C may actually increase

Level 2: $qB^C - V < 0$: Market value of assets < interest-bearing liabilities

- No fiscal support required as long as
 \[
 \int_0^\infty \frac{\dot{M}_t}{P_t} e^{-\int_0^t \rho_s ds} dt > V - qB^C
 \]
- High expected inflation $\rightarrow q \downarrow$ but PDV of seigniorage holds up/increases (stream of seigniorage provides a hedge against drops in q)
Level 3: \[\frac{qB^C - V}{P_0} + \int_0^\infty \frac{\dot{M}_t}{P_t} e^{-\int_0^t \rho_s ds} dt < 0 \]

- For very high \(r \)/inflation economy may move to the other side of the Laffer curve: \[\rightarrow \int_0^\infty \frac{\dot{M}_t}{P_t} e^{-\int_0^t \rho_s ds} dt \downarrow \]

- \[\int_0^\infty \tau_t^C e^{-\int_0^t \rho_s ds} dt < 0 \rightarrow \tau_t^C < 0 \] for some \(t \) \rightarrow fiscal support required
Parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>normalization, foreign assets</td>
<td></td>
</tr>
<tr>
<td>$Y - G = 1$</td>
<td></td>
</tr>
<tr>
<td>$F_0 = 0$</td>
<td></td>
</tr>
<tr>
<td>discount rate, reversion to st.st., population and productivity growth</td>
<td></td>
</tr>
<tr>
<td>$\beta = 0.01$</td>
<td>0.01</td>
</tr>
<tr>
<td>$\gamma = 0.01$</td>
<td></td>
</tr>
<tr>
<td>$n = 0.0075$</td>
<td></td>
</tr>
<tr>
<td>monetary policy</td>
<td></td>
</tr>
<tr>
<td>$\theta_\pi = 2$</td>
<td></td>
</tr>
<tr>
<td>$\theta_r = 1$</td>
<td></td>
</tr>
<tr>
<td>$\bar{\pi} = 0.02$</td>
<td></td>
</tr>
<tr>
<td>initial assets (par value), reserves, and currency as of Jan 2 2014</td>
<td></td>
</tr>
<tr>
<td>$\frac{B^C}{P} = .327$</td>
<td></td>
</tr>
<tr>
<td>$\frac{V}{P} = .207$</td>
<td></td>
</tr>
<tr>
<td>$\frac{M}{P} = .104$</td>
<td></td>
</tr>
<tr>
<td>bonds: duration and coupon</td>
<td></td>
</tr>
<tr>
<td>$\delta^{-1} = 6$</td>
<td></td>
</tr>
<tr>
<td>$\chi = 0.035$</td>
<td></td>
</tr>
<tr>
<td>money demand</td>
<td></td>
</tr>
<tr>
<td>$\psi_0 = 2.31 \times 10^{-6}$</td>
<td></td>
</tr>
<tr>
<td>$\psi_1 = -0.055$</td>
<td></td>
</tr>
</tbody>
</table>
normalization, foreign assets

\[Y - G = 1 \quad F_0 = 0 \]

discount rate, reversion to st.st., population and productivity growth

\[\beta = 0.01 \quad n = 0.0075 \quad \gamma = 0.01 \]

monetary policy

\[\theta_\pi = 2 \quad \theta_r = 1 \]

\[\bar{\pi} = 0.02 \]

initial assets (par value), reserves, and currency as of Jan 2 2014

\[\frac{B^C}{P} = \frac{0.327}{207} \quad \frac{V}{P} = \frac{0.207}{207} \]

\[\frac{M}{P} = \frac{0.104}{207} \]

bonds: duration and coupon

\[\delta^{-1} = 6 \quad \chi = 0.035 \]

money demand

\[\psi_0 = 2.31 \times 10^{-6} \quad \psi_1 = -0.055 \]

Del Negro, Sims

Central bank’s balance sheet

Norges Bank, June 2014

16 / 38
A scatter plot of short term interest rates and M/PC

Del Negro, Sims
Central bank's balance sheet
Norges Bank, June 2014
Laffer curve

\[\text{Seigniorage} \]

\[\pi_{ss} \]

Del Negro, Sims

Central bank’s balance sheet

Norges Bank, June 2014
Baseline and scenarios

• Baseline: real rate path (ρ) chosen so that r path roughly matches Carpenter et al.

• Scenarios (time 0 “surprise”, perfect foresight afterwards)
 1. **Exogenous “shocks”**
 - “Higher rates” Carpenter et al. scenario (with the CB recognizing the change, or not)
 - 10 year (exogenous) “inflation scare”
 - Explosive paths (hyperinflations)
 2. **Self-fulfilling crises**
Baseline and Higher Rates Scenario

Real Short Rate

0 0.5 1 1.5 2 2.5 3

Baseline
Higher rates

Del Negro, Sims
Central bank’s balance sheet
Norges Bank, June 2014
Baseline and “Higher Rates” Scenario

Nominal Short Rate

Baseline
Higher rates

Del Negro, Sims
Central bank’s balance sheet
Norges Bank, June 2014
21 / 38
Balance Sheet Implications

\[
\begin{array}{ccccccc}
\text{(1)} & \text{(2)} & \text{(3)} & \text{(4)} & \text{(5)} & \text{(6)} & \text{(7)} \\
qB/P & -V/P & \text{PDV} & \text{seig.} & (1)+(2) & \bar{\tau}^C & q \\
\end{array}
\]

Baseline scenario 0.146 0.998 1.144 0.0026 1.08
Seigniorage and M/PC

Data

Model

Del Negro, Sims Central bank's balance sheet

Norges Bank, June 2014
Balance Sheet Implications

<table>
<thead>
<tr>
<th></th>
<th>(1) (qB/P)</th>
<th>(2) PDV seig.</th>
<th>(3) ((1)+(2))</th>
<th>(4) (\bar{\tau}^C)</th>
<th>(5) (q)</th>
<th>(6) (\Delta M/P)</th>
<th>(7) (B/B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline scenario</td>
<td>0.146</td>
<td>0.998</td>
<td>1.144</td>
<td>0.0026</td>
<td>1.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher rates ((\gamma))</td>
<td>0.142</td>
<td>1.287</td>
<td>1.429</td>
<td>0.0031</td>
<td>1.06</td>
<td>0.003</td>
<td>64.59</td>
</tr>
</tbody>
</table>
Balance Sheet Implications

<table>
<thead>
<tr>
<th></th>
<th>(1) qB/P</th>
<th>(2) PDV seig.</th>
<th>(3) $(1)+(2)$</th>
<th>(4) $\bar{\tau}^C$</th>
<th>(5) q</th>
<th>(6) $\Delta M/P$</th>
<th>(7) \bar{B}/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline scenario</td>
<td>0.146</td>
<td>0.998</td>
<td>1.144</td>
<td>0.0026</td>
<td>1.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher rates (γ)</td>
<td>0.142</td>
<td>1.287</td>
<td>1.429</td>
<td>0.0031</td>
<td>1.06</td>
<td>0.003</td>
<td>64.59</td>
</tr>
<tr>
<td>Higher rates (β)</td>
<td>0.133</td>
<td>0.169</td>
<td>0.302</td>
<td>0.0033</td>
<td>1.06</td>
<td>-0.006</td>
<td>14.42</td>
</tr>
</tbody>
</table>
Baseline vs different θ_π – Higher β/same intercept

Nominal Short Rate

- Baseline
- $\theta_\pi = 2$
- $\theta_\pi = 3$
- $\theta_\pi = 1.05$

Del Negro, Sims
Central bank’s balance sheet
Norges Bank, June 2014
25 / 38
Balance Sheet Implications/Higher Rates

<table>
<thead>
<tr>
<th></th>
<th>(1) qB/P</th>
<th>(2) PDV seig.</th>
<th>(3) $(1)+(2)$ $\bar{\tau}^C$</th>
<th>(4) q</th>
<th>(5) $\Delta M/P$</th>
<th>(6) \bar{B}/B</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline scenario</td>
<td>0.146</td>
<td>0.998</td>
<td>1.144</td>
<td>0.0026</td>
<td>1.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher rates (β)</td>
<td>0.133</td>
<td>0.169</td>
<td>0.302</td>
<td>0.0033</td>
<td>1.06</td>
<td>-0.006</td>
<td>14.42</td>
</tr>
<tr>
<td>Higher rates (β)/same intercept</td>
<td>-0.055</td>
<td>1.162</td>
<td>1.107</td>
<td>0.0132</td>
<td>0.52</td>
<td>-0.024</td>
<td>3.38</td>
</tr>
<tr>
<td>Lower θ_π</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Laffer curve/Alternative Money Demand

Seigniorage
\(\pi_{ss} \)

Del Negro, Sims Central bank’s balance sheet
Norges Bank, June 2014
A scatter plot of short term interest rates and M/PC
/Alternative Money Demand
Balance Sheet Implications /Alternative Money Demand

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>qB/P</td>
<td>PDV</td>
<td>$-V/P$</td>
<td>seig. $(1)+(2)$</td>
<td>$\bar{\tau}$</td>
<td>C^π</td>
<td>$\Delta M/P$</td>
</tr>
<tr>
<td>Baseline scenario</td>
<td>0.146</td>
<td>0.214</td>
<td>0.360</td>
<td>0.0008</td>
<td>1.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher rates (β)</td>
<td>-0.111</td>
<td>0.095</td>
<td>-0.016</td>
<td>-0.0002</td>
<td>0.52</td>
<td>-0.080</td>
<td>0.97</td>
</tr>
<tr>
<td>/same intercept</td>
<td>Lower θ_{π}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Self-fulfilling CB Solvency Crises

- Can multiple equilibria arise in absence of fiscal backing?
- If $\tau_t^C \geq 0$ for all t, then the CB *must rely on seigniorage if* $qB - V < 0$
Self-fulfilling CB Solvency Crises

• Can multiple equilibria arise in absence of fiscal backing?

• If $\tau_t^C \geq 0$ for all t, then the CB must rely on seigniorage if $qB - V < 0$

• Expectations that the CB will switch to a new rule with target $\tilde{\pi} > \bar{\pi}$ will imply $q_0(\tilde{\pi}) \downarrow$ and produce a gap $\frac{q_0(\tilde{\pi})B_0^C - V_0}{P_0(\tilde{\pi})} < 0$

• This gap will have to be filled with future seigniorage $PDVS_0(\tilde{\pi})$, thereby validating the initial expectations

• We consider equilibria where the central bank will change its inflation target to $\tilde{\pi} > \bar{\pi}$ at time $t = \tilde{T}$ for a period $\tilde{\Delta}$ and find solutions of

$$\frac{q_0(\tilde{\pi})B_0^C - V_0}{P_0(\tilde{\pi})} + PDVS_0(\tilde{\pi}) = 0$$
For What Level of B^C Are Self-fulfilling Crises Possible?
Conclusions

- CB solvency would become an issue only under rather extreme scenarios, for current balance sheet size

- These conclusions hinge on the properties of *currency demand* and *seigniorage*
 - ... on which there is considerable uncertainty

- Implications: Fiscal backing for the CB (e.g., Bank of England) allows it to pursue its mandate without being concerned about its balance sheet
 - ... and such backing seems unlikely to be needed in equilibrium on the basis of our model
Inflation Scare – different θ_π’s

- Fisher equation:
 \[r_t = \rho_t + \frac{\dot{P}_t}{P_t} + x \]
 for $t \in [0, 10]$, where $x = P(\Delta P) \times \Delta P = 2\%$

Nominal Short Rate
Balance Sheet Implications / Inflation Scare

<table>
<thead>
<tr>
<th>Scenario</th>
<th>(1) qB/P</th>
<th>(2) PDV seig.</th>
<th>(3) $(1)+(2)$</th>
<th>(4) $\bar{\tau}^C$</th>
<th>(5) q</th>
<th>(6) $\Delta M/P$</th>
<th>(7) \bar{B}/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline scenario</td>
<td>0.133</td>
<td>0.937</td>
<td>1.070</td>
<td>0.0024</td>
<td>1.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflation scare</td>
<td>0.067</td>
<td>0.943</td>
<td>1.010</td>
<td>0.0023</td>
<td>0.94</td>
<td>-0.023</td>
<td>7.16</td>
</tr>
<tr>
<td>Higher θ_π</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflation scare</td>
<td>0.081</td>
<td>0.928</td>
<td>1.009</td>
<td>0.0022</td>
<td>0.98</td>
<td>-0.020</td>
<td>9.10</td>
</tr>
<tr>
<td>Lower θ_π</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflation scare</td>
<td>0.004</td>
<td>0.968</td>
<td>0.972</td>
<td>0.0023</td>
<td>0.68</td>
<td>-0.020</td>
<td>3.65</td>
</tr>
</tbody>
</table>
Paths for remittances

Baseline

Higher β/same intercept
Explosive paths – different θ_π’s

- Explosive paths: $r_t = \text{stable solution} + \kappa e^{\theta_r(\theta_\pi - 1)t}$
Balance Sheet Implications / Explosive path

<table>
<thead>
<tr>
<th></th>
<th>(1) qB/P</th>
<th>(2) PDV seig.</th>
<th>(3) $(1)+(2)$</th>
<th>(4) $\bar{\tau}^C$</th>
<th>(5) q</th>
<th>(6) $\Delta M/P$</th>
<th>(7) \bar{B}/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline scenario</td>
<td>0.146</td>
<td>0.998</td>
<td>1.144</td>
<td>0.0026</td>
<td>1.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Explosive path</td>
<td>3.124</td>
<td>Inf</td>
<td>Inf</td>
<td>Inf</td>
<td>0.88</td>
<td>3.043</td>
<td>Inf</td>
</tr>
<tr>
<td>Higher θ_π</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(10) Explosive path</td>
<td>6.124</td>
<td>Inf</td>
<td>Inf</td>
<td>Inf</td>
<td>0.64</td>
<td>6.120</td>
<td>Inf</td>
</tr>
<tr>
<td>Lower θ_π</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(13) Explosive path</td>
<td>0.241</td>
<td>Inf</td>
<td>Inf</td>
<td>Inf</td>
<td>1.05</td>
<td>0.106</td>
<td>Inf</td>
</tr>
</tbody>
</table>